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1 Background

1.1 Block Diagonal matrices

Define a block diagonal matrix M to be a square matrix with all zeros, except
square matrices M; placed corner-to-corner along the diagonal:

M, 0 - 0
0 My --- 0
M = . . . .
0 0 - M,

Note that each M; can be a different size.

Theorem 1.1 The eigenvalues of M are exactly the union of the eigenvalues,
with multiplicities, from each M.

Proof If A is an eigenvalue of one of the matrices M;, then for some v, M;v = Av.
Taking X and Y to be arbitrary square matrices, we have:

X 0 O 0 0 0
0 M; O v | = My | =X v
0 0 Y 0 0 0

Therefore A is an eigenvalue of M as well. This holds for all A, thus all
eigenvalues of any of the M; are also eigenvalues of M. Since the width of M is
exactly the sum of the widths of each M;, there can be no additional eigenvalues
for M. |

1.2 Order doesn’t matter

This will formally show what is intuitively obvious: that the order we choose
data points doesn’t matter.
We first choose an index for each data point. The weighted adjacency graph
A reflects this, as A; ; is the similarity between the 7th and jth data points.
Suppose we have two different orderings of data. From those we produce A
and A. Suppose permutation matrix P transforms A into A as follows:

A=pPAPT

Why two permutation matrices? Suppose P flips rows 2 and 3. Then PA
flips those two rows. But then we need to flip columns 2 and 3. So, transpose
the result, flips rows 2 and 3, and transpose it back. In other words, compute
this:



(P(PA)TYT = PAPT

Likewise, let:

D =pDPT
Compute the graph LaPlacian:

L =PDPT — PAPT = P(D — A)P" = PLPT

How do the eigenvalues and eigenvectors of L and L differ? Let z be an
eigenvector of L, with eigenvalue A.

Lx = M\v

Since every permutation matrix is orthogonal, PT P = I:

LPT Pz = \z

PLPTPx = Pz

L(Pz) = \(Pz)

For every eigenvalue/eigenvector pair for L, above holds. That is, Px is an
eigenvector of L with the same eigenvalue \. Pz is simply the same permutation
of the rows of vector x.

To conclude, changing order of data points in A makes only one difference:
the vectors uy will change their ordering in the same way.

2 Perturbation theory

In this section we will show how small changes in a matrix make only small
changes to the eigenvalues and eigenvectors.
Let M be an n x n matrix. Let A be an eigenvalue with eigenvector x.

2.1 Eigenvalues: Weyl’s inequality

Let A be an n x n hermitian matrix, with eigenvalues «; ...ay,. This is our
"actual” matrix.

Let E be an n x n hermitian matrix, whose values are small. This is our
7error” matrix. Let €;...¢, be the eigenvalues of F.

Let I = A+ E. This is our ”ideal” matrix. Let ¢7...t, be the eigenvalues
of A+.

Order the eigenvalues of A, F, and I so that they are in ascending order.

Then for alli =1,...,n:



tite<a; <t ey

In plain terms, each eigenvalue «; differs from its ”ideal” counterpart ¢; by
at most the largest eigenvalue of F, e:

L <o St €y

The matrix of all zeros has all zero eigenvalues. Thus as £ — 0 €, — 0.

2.2 Eigenvectors

Suppose that A is diagonalizable matrix as follows:

A=XAX"!

AX = XA

Suppose, further, that A (and therefore X and A), depend on some real-
valued parameter p. Take the derivative of both sides with respect to p, using
the product rule:

AX +AX = X'A+ XN

AX - XN =—-AX"+ X'A
Left-multiply both sides by X ~!:
X7IAX - AN =-X1AX' + X1X'A
Introduce C such that X' = XC.
XTAX - N =-X"1AXC+ X 1XCA
Simplify:

X 1AX - AN =—-AC+CA

Parse the entries of each side:

(=AC + CA)ij = —Xicij + cijAj = cij(Aj — Ai)

(X_lA/X — A/)ij = m;lA'a:_j — A;]
Where i # j:
a:i__lA’x_j
Aj— A

Trust me, when A’ is small, the entries ¢;; are also small. Therefore X’ is
small. In other words, small changes to A make only small changes to X.

Cij =



3 Problem statement

Given a data set x1,22,...,%,.

The goal is to create a clustering that groups data according to proximity.
In particular, we want to group data that is ”clustered” in non-linear ways, by
modeling proximity between near datapoints.

4 Similarity matrix

Model the data set as a massive edge-weighted, undirected graph. The graph
will have n vertices, one for each data point.

Choose a method of modeling similarity between vertices. Assign each edge
weight to be the similarity measure between the data points. Similarity is
between 0 and 1. Create an n x n matrix S. Let S; ; be the similarity measure
between points x; and ;.

Given this matrix S, we find clustering through a graph partitioning algo-
rithm.

4.1 Similarity measures: examples

Neighborhood:
g . _ 1 if [Ja; —zj]| <€
31 0 if otherwise
Guassian:
— |l — ;]
5.y = e | 2

5 Graph LaPlacian
5.1 Definition

Suppose an undirected graph G, with vertices V' = {v1,v9,...} and edges E =
{e1,ea,...}. Assume G has no self-loops, and no parallel edges.
Suppose the adjacency matrix of the graph is:

0001 0O
000110
00 0 0 01
A_llOOOO
01 00 O0O
001 0 0O

The degree matrix is a diagonal matrix whose entries are the sum of each
row:



1 0 0 0 0 O
02 0 00O
001 0O0O0
D_OOOQOO
00 0O0T1PO0
00 0 0 01

The Laplacian matrix is formed by taking D — A. In this case:

1 o 0 -1 0 O

o 2 0 -1 -1 0

I— 0 O 1 0o 0 -1

]l -1 -1 0 2 0 0

0O -1 0 O 1 0

o 0 -1 0 O 1

The entries of L are:
deg(v;) ifi=j
Lij =< -1 if 7 # j and v; is adjacent to v;

0 otherwise.

Matrix L can also be formed from the incidence matrix. Let M be the
|E| x |V| incidence matrix of G. For each edge e that connects vertex ¢ and j,
such that ¢ < j, assign:

Me;:=—-1 and M,;:=1

All other entries are 0. Note that the edges can be listed in any order.
The incidence matrix from G could be written:

0 -1 0 0 10
-1 0 0 1 00
M= 0 -1 0 1 00
0 0 -1 0 0 1
It can be shown that for every graph:
L=M"M

Therefore, L is at least positive semi-definite. In fact, since every row of M
contains exactly one 1 and one -1, then M times the vector of all 1s is 0. Let 1
be a vector of all 1s:

M1=0
MTMT =0
ILT=0

These vectors 0 are each different sizes, but this shows that 1 is also in the
nullspace of L, and that therefore L is positive semi-definite.



5.2 Further property

As shown above, L is positive semi-definite.
L also satisfies, for all v € R™:

’UTL’U = % Z Z Ai’j (Ui — ’Uj)2

i=1 j=1

5.3 Proof

Remember the items of D are the row-wise sums of A. So:

vTDv =V <i Al,i) V1 + V2 (i A27i> Vg + o+ Uy (i An,z) Un

=1 =1 =1

j=11i=1
Breaking down v” Av, we get:
A Ao Ain v
" A1 Ago Az n v
viAv=[ v v2 ... vy | :
An1 Ano ... Apn Un,
o i}
vi A
i=1
n
v; Ag i
Z[’Ul vy ... Un] i=1
n
> viAn
L =1 _

n n n
=1 g v Ay i + U2 E v;Ag i+ oy E viApi
i=1 i=1 i=1

= Z Z ’UjUZ'Aj_j

j=11i=1

Putting the two together:

v Ly = vT(D — A)v = vTDv — vT Av



n

D A (0] — o)

j=11i=1

<.
Il
N
o
Il
N

Swap ¢ and j in the second term. Since A is symmetric, A;; = A; ; so no
need to swap A’s indices:

1 n 1 n n
5 Z A : Uj’Ui) + § Z Z Aj7i (’Uz2 — ’Uﬂ]j)

j=11 i=1 j=1

M:

i
N

Exchange the two sums in the second term and combine:

= % Z ZAj’i (’UZ2 — 2'1)ﬂ)j + ’UJQ)

i=1 j=1

n n

P IIC

1=15=1

6 Key Theorems

Let graph G have connected components Ay, Ag, ..., Ax. We define:

!
T o h o 1, if z; € Ay,
k= WHSICY = 0, ifay ¢ Ay
Tn
Theorem 6.1 The nullspace of L has dimension K and is spanned by 11,1s,...,1k.
Proof
Case 1: K =1

Since there is only one cluster, 1; is all 1s. By the properties of the graph
LaPlacian, 1, € N(L).
Next, we need to show that if Lf =0, then f = alj.

Lf=0

0=fTLf=>"> A (fi
)



Since we have only one cluster, A; ; > 0 for all 4, j. Therefore, for all ¢ and

fi=1;
Thus, every f is a multiple of 1;. Therefore, dim(N(L)) = 1.

Case 2: K > 1

Reorder the vertices by connected component. This can be done as the order
we list vertices is arbitrary. L becomes a block diagonal matrix:

Ly 0 . 0
I - 0 Ly . O
0 0 . Lg

Each Ly is a graph LaPlacian matrix. They are each of different sizes, but
because of Case 1 above, L1 = 0.
Therefore, in a similar case to the block diagonal discussion above::

X 0 0 0 0
Li,=| 0 L, 0 T|=1]0
0 0 Y 0 0

Thus, every T, is in the nullspace of L. Note, in addition, that the vectors
1, are mutually independent.

Since N(Lj) has dimension 1 for all k, then N(L) has dimension K. But
we’ve already found K independent vectors in N(L), namely {fl, To,..., TK}
Therefore there are no others needed and the vectors I; span N(L).

7 Ideal Case

7.1 Key Theorem

Suppose all similarities between clusters are 0. Compute basis u, us, ..., ux for
N(L). Because of above theorem, span{ui,ug,...,ux} = span{ly, la,...,1x}.
Define a matrix Y such that:

Y:[ul Uy - uK]
Theorem 7.1 If z; and x; are in the same cluster, then:
rowi of Y =rowj of Y
Proof By above theorem, for each uy:

U = Oégk)f1 +O(ék)fg + - —l—oz(I];)fK



for constants a'®. Suppose, as above proof, the datapoints are listed by

%

cluster. We can write above equation with block vectors:

— k)=
I 0 0 a%k;%‘
0 1 a1
uk:agk) 0 +a;k) o |+ ..—|—ay§) = 2.
: I o1
Thus:

AT o7 L QWO7

oV DT o o7

oW 0@ ... o7

If z; and z; belong to the same cluster, rows ¢ and j would be within the
same row-block above, and have the same values. If we change the order of our
data, then A, D, and L all change the order they list data, and our matrix Y
would be unchanged, except with rows in a different order. |

7.2 Example

Using example from earlier. We have two clusters in that case.

u = o1y +51f2

Us = a1y + Pala

Using our data from before:

1 0

1 0

- 0 - 1
=1 =14
1 0

0 1

Therefore:

Qp Qg

a1 Q9

Y = [ up us ] _ ﬁl ﬁQ
a1 Q9

a1 Q9

B B2

Notice that rows 1,2,4 and 5, that belong to the same component, have the
same coefficients. Likewise with rows 3 and 6.



8 General case

In general, we may not have any 0-valued eigenvalues of L. Perhaps each similar-
ity between clusters is simply a very low, positive, number. However, because of
perturbation theory of eigenvectors and eigenvalues, the eigenvectors and eigen-
values will be close to what the would have been in the ideal case. For matrix
FE with small values:

Lactual = Lideal +FE

Therefore, the smallest eigenvalues of Lgctyqr Will correspond to the zero
eigenvalues of L;jeq;. Instead of solving the nullspace, choose the k smallest
eigenvalues of Lyctyal-
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