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1 Background

1.1 Block Diagonal matrices

Define a block diagonal matrix M to be a square matrix with all zeros, except
square matrices Mi placed corner-to-corner along the diagonal:

M =


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mn


Note that each Mi can be a different size.

Theorem 1.1 The eigenvalues of M are exactly the union of the eigenvalues,
with multiplicities, from each Mi.

Proof If λ is an eigenvalue of one of the matricesMi, then for some v, Miv = λv.
Taking X and Y to be arbitrary square matrices, we have: X 0 0

0 Mi 0
0 0 Y

 0
v
0

 =

 0
Miv

0

 = λ

 0
v
0


Therefore λ is an eigenvalue of M as well. This holds for all λ, thus all

eigenvalues of any of the Mi are also eigenvalues of M . Since the width of M is
exactly the sum of the widths of each Mi, there can be no additional eigenvalues
for M .

1.2 Order doesn’t matter

This will formally show what is intuitively obvious: that the order we choose
data points doesn’t matter.

We first choose an index for each data point. The weighted adjacency graph
A reflects this, as Ai,j is the similarity between the ith and jth data points.

Suppose we have two different orderings of data. From those we produce A
and Â. Suppose permutation matrix P transforms A into Â as follows:

Â = PAPT

Why two permutation matrices? Suppose P flips rows 2 and 3. Then PA
flips those two rows. But then we need to flip columns 2 and 3. So, transpose
the result, flips rows 2 and 3, and transpose it back. In other words, compute
this:
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(P (PA)T )T = PAPT

Likewise, let:

D̂ = PDPT

Compute the graph LaPlacian:

L̂ = PDPT − PAPT = P (D −A)PT = PLPT

How do the eigenvalues and eigenvectors of L and L̂ differ? Let x be an
eigenvector of L, with eigenvalue λ.

Lx = λx

Since every permutation matrix is orthogonal, PTP = I:

LPTPx = λx

PLPTPx = Pλx

L̂(Px) = λ(Px)

For every eigenvalue/eigenvector pair for L, above holds. That is, Px is an
eigenvector of L̂ with the same eigenvalue λ. Px is simply the same permutation
of the rows of vector x.

To conclude, changing order of data points in A makes only one difference:
the vectors uk will change their ordering in the same way.

2 Perturbation theory

In this section we will show how small changes in a matrix make only small
changes to the eigenvalues and eigenvectors.

Let M be an n× n matrix. Let λ be an eigenvalue with eigenvector x.

2.1 Eigenvalues: Weyl’s inequality

Let A be an n × n hermitian matrix, with eigenvalues α1 . . . αn. This is our
”actual” matrix.

Let E be an n × n hermitian matrix, whose values are small. This is our
”error” matrix. Let ε1 . . . εn be the eigenvalues of E.

Let I = A + E. This is our ”ideal” matrix. Let ι1 . . . ιn be the eigenvalues
of A+.

Order the eigenvalues of A, E, and I so that they are in ascending order.
Then for all i = 1, . . . , n:
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ιi + ε1 ≤ αi ≤ ιi + εn

In plain terms, each eigenvalue αi differs from its ”ideal” counterpart ιi by
at most the largest eigenvalue of E, ε:

ιi ≤ αi ≤ ιi + εn

The matrix of all zeros has all zero eigenvalues. Thus as E → 0 εn → 0.

2.2 Eigenvectors

Suppose that A is diagonalizable matrix as follows:

A = XΛX−1

AX = XΛ

Suppose, further, that A (and therefore X and Λ), depend on some real-
valued parameter p. Take the derivative of both sides with respect to p, using
the product rule:

A′X +AX ′ = X ′Λ +XΛ′

A′X −XΛ′ = −AX ′ +X ′Λ

Left-multiply both sides by X−1:

X−1A′X − Λ′ = −X−1AX ′ +X−1X ′Λ

Introduce C such that X ′ = XC.

X−1A′X − Λ′ = −X−1AXC +X−1XCΛ

Simplify:

X−1A′X − Λ′ = −ΛC + CΛ

Parse the entries of each side:

(−ΛC + CΛ)ij = −λicij + cijλj = cij(λj − λi)

(X−1A′X − Λ′)ij = x−1i−A
′x−j − Λ′ij

Where i 6= j:

cij =
x−1i−A

′x−j

λj − λi
Trust me, when A′ is small, the entries cij are also small. Therefore X ′ is

small. In other words, small changes to A make only small changes to X.
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3 Problem statement

Given a data set x1, x2, . . . , xn.
The goal is to create a clustering that groups data according to proximity.

In particular, we want to group data that is ”clustered” in non-linear ways, by
modeling proximity between near datapoints.

4 Similarity matrix

Model the data set as a massive edge-weighted, undirected graph. The graph
will have n vertices, one for each data point.

Choose a method of modeling similarity between vertices. Assign each edge
weight to be the similarity measure between the data points. Similarity is
between 0 and 1. Create an n× n matrix S. Let Si,j be the similarity measure
between points xi and xj .

Given this matrix S, we find clustering through a graph partitioning algo-
rithm.

4.1 Similarity measures: examples

Neighborhood:

Si,j =

{
1 if ‖xi − xj‖ < ε
0 if otherwise

Guassian:

Si,j = exp

[
−‖xi − xj‖2

2σ2

]

5 Graph LaPlacian

5.1 Definition

Suppose an undirected graph G, with vertices V = {v1, v2, ...} and edges E =
{e1, e2, ...}. Assume G has no self-loops, and no parallel edges.

Suppose the adjacency matrix of the graph is:

A =


0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1
1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


The degree matrix is a diagonal matrix whose entries are the sum of each

row:
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D =


1 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1


The Laplacian matrix is formed by taking D −A. In this case:

L =


1 0 0 −1 0 0
0 2 0 −1 −1 0
0 0 1 0 0 −1
−1 −1 0 2 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1


The entries of L are:

Li,j =

 deg(vi) if i = j
−1 if i 6= j and vi is adjacent to vj
0 otherwise.

Matrix L can also be formed from the incidence matrix. Let M be the
|E| × |V | incidence matrix of G. For each edge e that connects vertex i and j,
such that i < j, assign:

Me,i := −1 and Me,j := 1

All other entries are 0. Note that the edges can be listed in any order.
The incidence matrix from G could be written:

M =


0 −1 0 0 1 0
−1 0 0 1 0 0
0 −1 0 1 0 0
0 0 −1 0 0 1


It can be shown that for every graph:

L = MTM

Therefore, L is at least positive semi-definite. In fact, since every row of M
contains exactly one 1 and one -1, then M times the vector of all 1s is 0. Let ~1
be a vector of all 1s:

M~1 = ~0

MTM~1 = ~0

L~1 = ~0

These vectors ~0 are each different sizes, but this shows that ~1 is also in the
nullspace of L, and that therefore L is positive semi-definite.
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5.2 Further property

As shown above, L is positive semi-definite.
L also satisfies, for all v ∈ Rn:

vTLv =
1

2

n∑
i=1

n∑
j=1

Ai,j(vi − vj)2

5.3 Proof

Remember the items of D are the row-wise sums of A. So:

vTDv = v1

(
n∑

i=1

A1,i

)
v1 + v2

(
n∑

i=1

A2,i

)
v2 + · · ·+ vn

(
n∑

i=1

An,i

)
vn

=

n∑
j=1

n∑
i=1

v2jAj,i

Breaking down vTAv, we get:

vTAv =
[
v1 v2 . . . vn

]

A1,1 A1,2 . . . A1,n

A2,1 A2,2 . . . A2,n

...
...

. . .
...

An,1 An,2 . . . An,n



v1
v2
...
vn



=
[
v1 v2 . . . vn

]


n∑
i=1

viA1,i

n∑
i=1

viA2,i

...
n∑

i=1

viAn,i


= v1

n∑
i=1

viA1,i + v2

n∑
i=1

viA2,i + · · ·+ vn

n∑
i=1

viAn,i

=

n∑
j=1

n∑
i=1

vjviAj,i

Putting the two together:

vTLv = vT (D −A)v = vTDv − vTAv
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=

n∑
j=1

n∑
i=1

v2jAj,i −
n∑

j=1

n∑
i=1

vjviAj,i

=

n∑
j=1

n∑
i=1

Aj,i

(
v2j − vjvi

)
=

1

2

n∑
j=1

n∑
i=1

Aj,i

(
v2j − vjvi

)
+

1

2

n∑
j=1

n∑
i=1

Aj,i

(
v2j − vjvi

)
Swap i and j in the second term. Since A is symmetric, Aj,i = Ai,j so no

need to swap A’s indices:

=
1

2

n∑
j=1

n∑
i=1

Aj,i

(
v2j − vjvi

)
+

1

2

n∑
i=1

n∑
j=1

Aj,i

(
v2i − vivj

)
Exchange the two sums in the second term and combine:

=
1

2

n∑
i=1

n∑
j=1

Aj,i

(
v2i − 2vivj + v2j

)
=

1

2

n∑
i=1

n∑
j=1

Aj,i (vi − vj)2

6 Key Theorems

Let graph G have connected components A1, A2, . . . , AK . We define:

~1k =

 γ1
...
γn

where γi =

{
1, if xi ∈ Ak

0, if xi /∈ Ak

Theorem 6.1 The nullspace of L has dimension K and is spanned by ~11,~12, . . . ,~1K .

Proof

Case 1: K = 1

Since there is only one cluster, ~11 is all 1s. By the properties of the graph
LaPlacian, ~11 ∈ N(L).

Next, we need to show that if Lf = 0, then f = α~11.

Lf = 0

0 = fTLf =
∑
i

∑
j

Ai,j(fi − fj)2
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Since we have only one cluster, Ai,j > 0 for all i, j. Therefore, for all i and
j:

fi = fj

Thus, every f is a multiple of ~11. Therefore, dim(N(L)) = 1.

Case 2: K > 1

Reorder the vertices by connected component. This can be done as the order
we list vertices is arbitrary. L becomes a block diagonal matrix:

L =


L1 0 . 0
0 L2 . 0
. . . .
0 0 . LK


Each Lk is a graph LaPlacian matrix. They are each of different sizes, but

because of Case 1 above, Lk
~1 = 0.

Therefore, in a similar case to the block diagonal discussion above::

L~1k =

 X 0 0
0 Lk 0
0 0 Y

 0
~1
0

 =

 0
0
0


Thus, every ~1k is in the nullspace of L. Note, in addition, that the vectors

~1k are mutually independent.
Since N(Lk) has dimension 1 for all k, then N(L) has dimension K. But

we’ve already found K independent vectors in N(L), namely {~11,~12, . . . ,~1K}.
Therefore there are no others needed and the vectors ~1k span N(L).

7 Ideal Case

7.1 Key Theorem

Suppose all similarities between clusters are 0. Compute basis u1, u2, . . . , uK for
N(L). Because of above theorem, span{u1, u2, . . . , uK} = span{~11,~12, . . . ,~1K}.

Define a matrix Y such that:

Y =
[
u1 u2 · · · uK

]
Theorem 7.1 If xi and xj are in the same cluster, then:

row i of Y = row j of Y

Proof By above theorem, for each uk:

uk = α
(k)
1
~11 + α

(k)
2
~12 + · · ·+ α

(k)
K
~1K
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for constants α
(k)
i . Suppose, as above proof, the datapoints are listed by

cluster. We can write above equation with block vectors:

uk = α
(k)
1


~1
0
0
...

+ α
(k)
2


0
~1
0
...

+ . . .+ α
(k)
K


0
0
...
~1

 =


α
(k)
1
~1

α
(k)
2
~1

...

α
(k)
K
~1


Thus:

Y =


α
(1)
1
~1 α

(2)
1
~1 · · · α

(K)
1

~1

α
(1)
2
~1 α

(2)
2
~1 · · · α

(k)
2
~1

...
...

. . .
...

α
(1)
K
~1 α

(2)
K
~1 · · · α

(K)
K

~1


If xi and xj belong to the same cluster, rows i and j would be within the

same row-block above, and have the same values. If we change the order of our
data, then A, D, and L all change the order they list data, and our matrix Y
would be unchanged, except with rows in a different order.

7.2 Example

Using example from earlier. We have two clusters in that case.

u1 = α1
~11 + β1~12

u2 = α2
~11 + β2~12

Using our data from before:

~11 =


1
1
0
1
1
0

 ~12 =


0
0
1
0
0
1


Therefore:

Y =
[
u1 u2

]
=


α1 α2

α1 α2

β1 β2
α1 α2

α1 α2

β1 β2


Notice that rows 1,2,4 and 5, that belong to the same component, have the

same coefficients. Likewise with rows 3 and 6.
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8 General case

In general, we may not have any 0-valued eigenvalues of L. Perhaps each similar-
ity between clusters is simply a very low, positive, number. However, because of
perturbation theory of eigenvectors and eigenvalues, the eigenvectors and eigen-
values will be close to what the would have been in the ideal case. For matrix
E with small values:

Lactual = Lideal + E

Therefore, the smallest eigenvalues of Lactual will correspond to the zero
eigenvalues of Lideal. Instead of solving the nullspace, choose the k smallest
eigenvalues of Lactual.
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